The Game of Hex and the Brouwer Fixed-Point Theorem

نویسندگان

  • David Gale
  • DAVID GALE
چکیده

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hex Game Theorem and the Arrow Impossibility Theorem: the Case of Weak Orders

The Arrow impossibility theorem when individual preferences are weak orders is equivalent to the HEX game theorem. Because Gale showed that the Brouwer fixed point theorem is equivalent to the HEX game theorem, this paper indirectly shows the equivalence of the Brouwer fixed point theorem and the Arrow impossibility theorem. Chichilnisky showed the equivalence of her impossibility theorem and t...

متن کامل

On the equivalence of the HEX game theorem and the Duggan-Schwartz theorem for strategy-proof social choice correspondences

Gale [D. Gale, The game of HEX and the Brouwer fixed-point theorem, American Mathematical Monthly 86 (1979) 818–827] has shown that the so called HEX game theorem that any HEX game has one winner is equivalent to the Brouwer fixed point theorem. In this paper we will show that under some assumptions about marking rules of HEX games, the HEX game theorem for a 6 · 6 HEX game is equivalent to the...

متن کامل

The Complexity of Hex and the Jordan Curve Theorem

The Jordan curve theorem and Brouwer’s fixed-point theorem are fundamental problems in topology. We study their computational relationship, showing that a stylized computational version of Jordan’s theorem is PPAD-complete, and therefore in a sense computationally equivalent to Brouwer’s theorem. As a corollary, our computational result implies that these two theorems directly imply each other ...

متن کامل

A Combinatorial Approach to the Brouwer Fixed Point Theorem

The Brouwer Fixed Point Theorem states that any continuous mapping from a closed ball in Euclidean space to itself has at least one fixed point. This theorem has a wide variety of applications in areas such as differential equations, economics, and game theory. Although this is fundamentally an analytic and topological statement, there exists an elegant combinatorial proof using Sperner’s Lemma...

متن کامل

A Brief Glimpse of Topological Combinatorics

Lovazs’ proof of the Kneser Conjecture presents a beautiful application of Borsuk-Ulam Theorem, a purely topological result, to a combinatorial problem on finite graphs. Moreover, Kneser-Lovasz Theorem is far from being the only case in which a combinatorial problem admits as a solution that uses topological techniques. It is rather surprising that the study of continuous maps would yield elega...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007